Towards a new combination therapy for tuberculosis with next generation benzothiazinones
نویسندگان
چکیده
The benzothiazinone lead compound, BTZ043, kills Mycobacterium tuberculosis by inhibiting the essential flavo-enzyme DprE1, decaprenylphosphoryl-beta-D-ribose 2-epimerase. Here, we synthesized a new series of piperazine-containing benzothiazinones (PBTZ) and show that, like BTZ043, the preclinical candidate PBTZ169 binds covalently to DprE1. The crystal structure of the DprE1-PBTZ169 complex reveals formation of a semimercaptal adduct with Cys387 in the active site and explains the irreversible inactivation of the enzyme. Compared to BTZ043, PBTZ169 has improved potency, safety and efficacy in zebrafish and mouse models of tuberculosis (TB). When combined with other TB drugs, PBTZ169 showed additive activity against M. tuberculosis in vitro except with bedaquiline (BDQ) where synergy was observed. A new regimen comprising PBTZ169, BDQ and pyrazinamide was found to be more efficacious than the standard three drug treatment in a murine model of chronic disease. PBTZ169 is thus an attractive drug candidate to treat TB in humans.
منابع مشابه
In vitro combination studies of benzothiazinone lead compound BTZ043 against Mycobacterium tuberculosis.
Benzothiazinones (BTZ) are a new class of drug candidates to combat tuberculosis that inhibit decaprenyl-phosphoribose epimerase (DprE1), an essential enzyme involved in arabinan biosynthesis. Using the checkerboard method and cell viability assays, we have studied the interaction profiles of BTZ043, the current lead compound, with several antituberculosis drugs or drug candidates against Mycob...
متن کاملIn Vivo Activity of the Benzothiazinones PBTZ169 and BTZ043 against Nocardia brasiliensis
BACKGROUND Mycetoma is a neglected, chronic, and deforming infectious disease caused by fungi and actinomycetes. In Mexico, N. brasiliensis is the predominant etiologic agent. Therapeutic alternatives are necessary because the current drug regimens have several disadvantages. Benzothiazinones (BTZ) are a new class of candidate drugs that inhibit decaprenyl-phosphoribose-epimerase (DprE1), an es...
متن کاملIn-silico Metabolome Target Analysis Towards PanC-based Antimycobacterial Agent Discovery
Mycobacterium tuberculosis, the main cause of tuberculosis (TB), has still remained a global health crisis especially in developing countries. Tuberculosis treatment is a laborious and lengthy process with high risk of non compliance, cytotoxicity adverse events and drug resistance in patient. Recently, there has been an alarming rise of drug resistant in TB. In this regard, it is an unmet need...
متن کاملIn-silico Metabolome Target Analysis Towards PanC-based Antimycobacterial Agent Discovery
Mycobacterium tuberculosis, the main cause of tuberculosis (TB), has still remained a global health crisis especially in developing countries. Tuberculosis treatment is a laborious and lengthy process with high risk of non compliance, cytotoxicity adverse events and drug resistance in patient. Recently, there has been an alarming rise of drug resistant in TB. In this regard, it is an unmet need...
متن کاملBenzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis.
New drugs are required to counter the tuberculosis (TB) pandemic. Here, we describe the synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB. Using genetics and biochemistry, we identified the enzyme decaprenylphosphoryl-beta-d-ribose 2'-epimerase as a major BTZ...
متن کامل